eden/src/core/arm/nce/patcher.cpp

699 lines
27 KiB
C++

// SPDX-FileCopyrightText: Copyright 2026 Eden Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#include <numeric>
#include <bit>
#include "common/arm64/native_clock.h"
#include "common/literals.h"
#include "core/arm/nce/arm_nce.h"
#include "core/arm/nce/guest_context.h"
#include "core/arm/nce/instructions.h"
#include "core/arm/nce/patcher.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/svc.h"
#include "core/memory.h"
#include "core/hle/kernel/k_thread.h"
namespace Core::NCE {
Patcher::Patcher(Patcher&& other) noexcept
: patch_cache(std::move(other.patch_cache)),
m_patch_instructions(std::move(other.m_patch_instructions)),
m_patch_instructions_pre(std::move(other.m_patch_instructions_pre)),
c(m_patch_instructions),
c_pre(m_patch_instructions_pre),
m_save_context(other.m_save_context),
m_load_context(other.m_load_context),
m_save_context_pre(other.m_save_context_pre),
m_load_context_pre(other.m_load_context_pre),
mode(other.mode),
total_program_size(other.total_program_size),
m_relocate_module_index(other.m_relocate_module_index),
modules(std::move(other.modules)),
curr_patch(nullptr) {
if (!modules.empty()) {
curr_patch = &modules.back();
}
}
using namespace Common::Literals;
using namespace oaknut::util;
using NativeExecutionParameters = Kernel::KThread::NativeExecutionParameters;
constexpr size_t MaxRelativeBranch = 128_MiB;
constexpr u32 ModuleCodeIndex = 0x24 / sizeof(u32);
Patcher::Patcher() : c(m_patch_instructions), c_pre(m_patch_instructions_pre) {
LOG_WARNING(Core_ARM, "Patcher initialized with LRU cache {}",
patch_cache.isEnabled() ? "enabled" : "disabled");
// The first word of the patch section is always a branch to the first instruction of the
// module.
c.dw(0);
c_pre.dw(0);
// Write save context helper function.
c.l(m_save_context);
WriteSaveContext();
c_pre.l(m_save_context_pre);
WriteSaveContext(c_pre);
// Write load context helper function.
c.l(m_load_context);
WriteLoadContext();
c_pre.l(m_load_context_pre);
WriteLoadContext(c_pre);
}
Patcher::~Patcher() = default;
bool Patcher::PatchText(const Kernel::PhysicalMemory& program_image,
const Kernel::CodeSet::Segment& code) {
// If we have patched modules but cannot reach the new module, then it needs its own patcher.
const size_t image_size = program_image.size();
// Check if we need split mode for large modules. A64 max takes 128MB
// tests showed that, with update, some are larger. (In this case 208MB)
bool use_split = false;
if (image_size > MaxRelativeBranch) {
if (total_program_size > 0) {
return false;
}
use_split = true;
} else if (total_program_size + image_size > MaxRelativeBranch && total_program_size > 0) {
return false;
}
// Add a new module patch to our list
modules.emplace_back();
curr_patch = &modules.back();
// The first word of the patch section is always a branch to the first instruction of the
// module.
if (use_split) {
// curr_patch->m_branch_to_module_relocations.push_back({0, 0});
curr_patch->m_branch_to_module_relocations_pre.push_back({0, 0});
} else {
curr_patch->m_branch_to_module_relocations.push_back({0, 0});
}
// Retrieve text segment data.
const auto text = std::span{program_image}.subspan(code.offset, code.size);
const auto text_words =
std::span<const u32>{reinterpret_cast<const u32*>(text.data()), text.size() / sizeof(u32)};
// Loop through instructions, patching as needed.
for (u32 i = ModuleCodeIndex; i < static_cast<u32>(text_words.size()); i++) {
const u32 inst = text_words[i];
const auto AddRelocations = [&](bool& pre_buffer) {
const uintptr_t this_offset = i * sizeof(u32);
const uintptr_t next_offset = this_offset + sizeof(u32);
pre_buffer = use_split && (this_offset < MaxRelativeBranch);
// Relocate to pre- or post-patch
if (pre_buffer) {
this->BranchToPatchPre(this_offset);
} else {
this->BranchToPatch(this_offset);
}
// Relocate from patch to next instruction.
return next_offset;
};
// SVC
if (auto svc = SVC{inst}; svc.Verify()) {
bool pre_buffer = false;
auto ret = AddRelocations(pre_buffer);
if (pre_buffer) {
WriteSvcTrampoline(ret, svc.GetValue(), c_pre, m_save_context_pre, m_load_context_pre);
} else {
WriteSvcTrampoline(ret, svc.GetValue(), c, m_save_context, m_load_context);
}
continue;
}
// MRS Xn, TPIDR_EL0
// MRS Xn, TPIDRRO_EL0
if (auto mrs = MRS{inst};
mrs.Verify() && (mrs.GetSystemReg() == TpidrroEl0 || mrs.GetSystemReg() == TpidrEl0)) {
const auto src_reg = mrs.GetSystemReg() == TpidrroEl0 ? oaknut::SystemReg::TPIDRRO_EL0
: oaknut::SystemReg::TPIDR_EL0;
const auto dest_reg = oaknut::XReg{static_cast<int>(mrs.GetRt())};
bool pre_buffer = false;
auto ret = AddRelocations(pre_buffer);
if (pre_buffer) {
WriteMrsHandler(ret, dest_reg, src_reg, c_pre);
} else {
WriteMrsHandler(ret, dest_reg, src_reg, c);
}
continue;
}
// MRS Xn, CNTPCT_EL0
if (auto mrs = MRS{inst}; mrs.Verify() && mrs.GetSystemReg() == CntpctEl0) {
bool pre_buffer = false;
auto ret = AddRelocations(pre_buffer);
if (pre_buffer) {
WriteCntpctHandler(ret, oaknut::XReg{static_cast<int>(mrs.GetRt())}, c_pre);
} else {
WriteCntpctHandler(ret, oaknut::XReg{static_cast<int>(mrs.GetRt())}, c);
}
continue;
}
// MRS Xn, CNTFRQ_EL0
if (auto mrs = MRS{inst}; mrs.Verify() && mrs.GetSystemReg() == CntfrqEl0) {
UNREACHABLE();
}
// MSR TPIDR_EL0, Xn
if (auto msr = MSR{inst}; msr.Verify() && msr.GetSystemReg() == TpidrEl0) {
bool pre_buffer = false;
auto ret = AddRelocations(pre_buffer);
if (pre_buffer) {
WriteMsrHandler(ret, oaknut::XReg{static_cast<int>(msr.GetRt())}, c_pre);
} else {
WriteMsrHandler(ret, oaknut::XReg{static_cast<int>(msr.GetRt())}, c);
}
continue;
}
if (auto exclusive = Exclusive{inst}; exclusive.Verify()) {
curr_patch->m_exclusives.push_back(i);
}
}
// Determine patching mode for the final relocation step
total_program_size += image_size;
if (use_split) {
this->mode = PatchMode::Split;
} else {
this->mode = image_size > MaxRelativeBranch ? PatchMode::PreText : PatchMode::PostData;
}
return true;
}
bool Patcher::RelocateAndCopy(Common::ProcessAddress load_base,
const Kernel::CodeSet::Segment& code,
Kernel::PhysicalMemory& program_image,
EntryTrampolines* out_trampolines) {
const size_t patch_size = GetSectionSize();
const size_t pre_patch_size = GetPreSectionSize();
const size_t image_size = (mode == PatchMode::Split) ? program_image.size() - pre_patch_size : program_image.size();
// Retrieve text segment data.
const auto text = std::span{program_image}.subspan(code.offset, code.size);
const auto text_words =
std::span<u32>{reinterpret_cast<u32*>(text.data()), text.size() / sizeof(u32)};
const auto ApplyBranchToPatchRelocation = [&](u32* target, const Relocation& rel) {
oaknut::CodeGenerator rc{target};
if (mode == PatchMode::PreText) {
rc.B(rel.patch_offset - patch_size - rel.module_offset);
} else {
rc.B(total_program_size - rel.module_offset + rel.patch_offset);
}
};
const auto ApplyBranchToPatchRelocationPre = [&](u32* target, const Relocation& rel) {
oaknut::CodeGenerator rc{target};
rc.B(static_cast<ptrdiff_t>(rel.patch_offset) - static_cast<ptrdiff_t>(pre_patch_size) - static_cast<ptrdiff_t>(rel.module_offset));
};
const auto ApplyBranchToPatchRelocationPostSplit = [&](u32* target, const Relocation& rel) {
oaknut::CodeGenerator rc{target};
rc.B(static_cast<ptrdiff_t>(image_size) + static_cast<ptrdiff_t>(rel.patch_offset) - static_cast<ptrdiff_t>(rel.module_offset));
};
const auto ApplyBranchToModuleRelocation = [&](u32* target, const Relocation& rel) {
oaknut::CodeGenerator rc{target};
if (mode == PatchMode::PreText) {
rc.B(patch_size - rel.patch_offset + rel.module_offset);
} else {
rc.B(rel.module_offset - total_program_size - rel.patch_offset);
}
};
const auto ApplyBranchToModuleRelocationPre = [&](u32* target, const Relocation& rel) {
oaknut::CodeGenerator rc{target};
rc.B(static_cast<ptrdiff_t>(pre_patch_size) + static_cast<ptrdiff_t>(rel.module_offset) - static_cast<ptrdiff_t>(rel.patch_offset));
};
const auto ApplyBranchToModuleRelocationPostSplit = [&](u32* target, const Relocation& rel) {
oaknut::CodeGenerator rc{target};
rc.B(static_cast<ptrdiff_t>(rel.module_offset) - static_cast<ptrdiff_t>(image_size) - static_cast<ptrdiff_t>(rel.patch_offset));
};
const auto RebasePatch = [&](ptrdiff_t patch_offset) {
if (mode == PatchMode::PreText) {
return GetInteger(load_base) + patch_offset;
} else {
return GetInteger(load_base) + total_program_size + patch_offset;
}
};
const auto RebasePc = [&](uintptr_t module_offset) {
if (mode == PatchMode::PreText) {
return GetInteger(load_base) + patch_size + module_offset;
}
if (mode == PatchMode::Split) {
return GetInteger(load_base) + pre_patch_size + module_offset;
}
return GetInteger(load_base) + module_offset;
};
// We are now ready to relocate!
auto& patch = modules[m_relocate_module_index++];
if (mode == PatchMode::Split) {
for (const Relocation& rel : patch.m_branch_to_pre_patch_relocations) {
ApplyBranchToPatchRelocationPre(text_words.data() + rel.module_offset / sizeof(u32), rel);
}
LOG_DEBUG(Core_ARM, "applied Pre: {}", patch.m_branch_to_pre_patch_relocations.size());
for (const Relocation& rel : patch.m_branch_to_patch_relocations) {
ApplyBranchToPatchRelocationPostSplit(text_words.data() + rel.module_offset / sizeof(u32), rel);
}
LOG_DEBUG(Core_ARM, "applied Post: {}", patch.m_branch_to_patch_relocations.size());
for (const Relocation& rel : patch.m_branch_to_module_relocations_pre) {
ApplyBranchToModuleRelocationPre(m_patch_instructions_pre.data() + rel.patch_offset / sizeof(u32), rel);
}
LOG_DEBUG(Core_ARM, "aplied Pre-module {}", patch.m_branch_to_module_relocations_pre.size());
for (const Relocation& rel : patch.m_branch_to_module_relocations) {
ApplyBranchToModuleRelocationPostSplit(m_patch_instructions.data() + rel.patch_offset / sizeof(u32), rel);
}
LOG_DEBUG(Core_ARM, "applied Post-module {}", patch.m_branch_to_module_relocations.size());
// Pre
for (const Relocation& rel : patch.m_write_module_pc_relocations_pre) {
oaknut::CodeGenerator rc{m_patch_instructions_pre.data() + rel.patch_offset / sizeof(u32)};
rc.dx(RebasePc(rel.module_offset));
}
// Post
for (const Relocation& rel : patch.m_write_module_pc_relocations) {
oaknut::CodeGenerator rc{m_patch_instructions.data() + rel.patch_offset / sizeof(u32)};
rc.dx(RebasePc(rel.module_offset));
}
// Trampolines (split pre + post)
for (const Trampoline& rel : patch.m_trampolines_pre) {
out_trampolines->insert({RebasePc(rel.module_offset),
GetInteger(load_base) + rel.patch_offset});
}
for (const Trampoline& rel : patch.m_trampolines) {
out_trampolines->insert({RebasePc(rel.module_offset),
GetInteger(load_base) + pre_patch_size + image_size + rel.patch_offset});
}
if (!m_patch_instructions_pre.empty()) {
u32 insn = m_patch_instructions_pre[0];
if ((insn & 0xFC000000) == 0x14000000) {
s32 imm26 = insn & 0x3FFFFFF;
// Sign extend
if (imm26 & 0x2000000) imm26 |= 0xFC000000;
}
}
} else {
for (const Relocation& rel : patch.m_branch_to_patch_relocations) {
ApplyBranchToPatchRelocation(text_words.data() + rel.module_offset / sizeof(u32), rel);
}
for (const Relocation& rel : patch.m_branch_to_module_relocations) {
ApplyBranchToModuleRelocation(m_patch_instructions.data() + rel.patch_offset / sizeof(u32),
rel);
}
// Rewrite PC constants
for (const Relocation& rel : patch.m_write_module_pc_relocations) {
oaknut::CodeGenerator rc{m_patch_instructions.data() + rel.patch_offset / sizeof(u32)};
rc.dx(RebasePc(rel.module_offset));
}
}
if (mode != PatchMode::Split) {
for (const Trampoline& rel : patch.m_trampolines) {
out_trampolines->insert({RebasePc(rel.module_offset), RebasePatch(rel.patch_offset)});
}
}
// Cortex-A57 seems to treat all exclusives as ordered, but newer processors do not.
// Convert to ordered to preserve this assumption.
for (const ModuleTextAddress i : patch.m_exclusives) {
auto exclusive = Exclusive{text_words[i]};
text_words[i] = exclusive.AsOrdered();
}
// Remove the patched module size from the total. This is done so total_program_size
// always represents the distance from the currently patched module to the patch section.
total_program_size -= image_size;
// Only copy to the program image of the last module
if (m_relocate_module_index == modules.size()) {
if (this->mode == PatchMode::PreText) {
ASSERT(image_size == total_program_size);
std::memcpy(program_image.data(), m_patch_instructions.data(),
m_patch_instructions.size() * sizeof(u32));
} else if (this->mode == PatchMode::Split) {
const size_t current_size = program_image.size();
program_image.resize(current_size + patch_size);
// Copy pre-patch buffer to the beginning
std::memcpy(program_image.data(), m_patch_instructions_pre.data(),
m_patch_instructions_pre.size() * sizeof(u32));
// Same for post-patch buffer to the end
std::memcpy(program_image.data() + current_size, m_patch_instructions.data(),
m_patch_instructions.size() * sizeof(u32));
} else {
program_image.resize(image_size + patch_size);
std::memcpy(program_image.data() + image_size, m_patch_instructions.data(),
m_patch_instructions.size() * sizeof(u32));
}
return true;
}
return false;
}
size_t Patcher::GetSectionSize() const noexcept {
return Common::AlignUp(m_patch_instructions.size() * sizeof(u32), Core::Memory::YUZU_PAGESIZE);
}
size_t Patcher::GetPreSectionSize() const noexcept {
return Common::AlignUp(m_patch_instructions_pre.size() * sizeof(u32), Core::Memory::YUZU_PAGESIZE);
}
void Patcher::WriteLoadContext(oaknut::VectorCodeGenerator& cg) {
// This function was called, which modifies X30, so use that as a scratch register.
// SP contains the guest X30, so save our return X30 to SP + 8, since we have allocated 16 bytes
// of stack.
cg.STR(X30, SP, 8);
cg.MRS(X30, oaknut::SystemReg::TPIDR_EL0);
cg.LDR(X30, X30, offsetof(NativeExecutionParameters, native_context));
// Load system registers.
cg.LDR(W0, X30, offsetof(GuestContext, fpsr));
cg.MSR(oaknut::SystemReg::FPSR, X0);
cg.LDR(W0, X30, offsetof(GuestContext, fpcr));
cg.MSR(oaknut::SystemReg::FPCR, X0);
cg.LDR(W0, X30, offsetof(GuestContext, nzcv));
cg.MSR(oaknut::SystemReg::NZCV, X0);
// Load all vector registers.
static constexpr size_t VEC_OFF = offsetof(GuestContext, vector_registers);
for (int i = 0; i <= 30; i += 2) {
cg.LDP(oaknut::QReg{i}, oaknut::QReg{i + 1}, X30, VEC_OFF + 16 * i);
}
// Load all general-purpose registers except X30.
for (int i = 0; i <= 28; i += 2) {
cg.LDP(oaknut::XReg{i}, oaknut::XReg{i + 1}, X30, 8 * i);
}
// Reload our return X30 from the stack and return.
// The patch code will reload the guest X30 for us.
cg.LDR(X30, SP, 8);
cg.RET();
}
void Patcher::WriteSaveContext(oaknut::VectorCodeGenerator& cg) {
// This function was called, which modifies X30, so use that as a scratch register.
// SP contains the guest X30, so save our X30 to SP + 8, since we have allocated 16 bytes of
// stack.
cg.STR(X30, SP, 8);
cg.MRS(X30, oaknut::SystemReg::TPIDR_EL0);
cg.LDR(X30, X30, offsetof(NativeExecutionParameters, native_context));
// Store all general-purpose registers except X30.
for (int i = 0; i <= 28; i += 2) {
cg.STP(oaknut::XReg{i}, oaknut::XReg{i + 1}, X30, 8 * i);
}
// Store all vector registers.
static constexpr size_t VEC_OFF = offsetof(GuestContext, vector_registers);
for (int i = 0; i <= 30; i += 2) {
cg.STP(oaknut::QReg{i}, oaknut::QReg{i + 1}, X30, VEC_OFF + 16 * i);
}
// Store guest system registers, X30 and SP, using X0 as a scratch register.
cg.STR(X0, SP, PRE_INDEXED, -16);
cg.LDR(X0, SP, 16);
cg.STR(X0, X30, 8 * 30);
cg.ADD(X0, SP, 32);
cg.STR(X0, X30, offsetof(GuestContext, sp));
cg.MRS(X0, oaknut::SystemReg::FPSR);
cg.STR(W0, X30, offsetof(GuestContext, fpsr));
cg.MRS(X0, oaknut::SystemReg::FPCR);
cg.STR(W0, X30, offsetof(GuestContext, fpcr));
cg.MRS(X0, oaknut::SystemReg::NZCV);
cg.STR(W0, X30, offsetof(GuestContext, nzcv));
cg.LDR(X0, SP, POST_INDEXED, 16);
// Reload our return X30 from the stack, and return.
cg.LDR(X30, SP, 8);
cg.RET();
}
void Patcher::WriteSvcTrampoline(ModuleDestLabel module_dest, u32 svc_id, oaknut::VectorCodeGenerator& cg, oaknut::Label& save_ctx, oaknut::Label& load_ctx) {
// Determine if we're writing to the pre-patch buffer
const bool is_pre = (&cg == &c_pre);
// We are about to start saving state, so we need to lock the context.
this->LockContext(cg);
// Store guest X30 to the stack. Then, save the context and restore the stack.
// This will save all registers except PC, but we know PC at patch time.
cg.STR(X30, SP, PRE_INDEXED, -16);
cg.BL(save_ctx);
cg.LDR(X30, SP, POST_INDEXED, 16);
// Now that we've saved all registers, we can use any registers as scratch.
// Store PC + 4 to arm interface, since we know the instruction offset from the entry point.
oaknut::Label pc_after_svc;
cg.MRS(X1, oaknut::SystemReg::TPIDR_EL0);
cg.LDR(X1, X1, offsetof(NativeExecutionParameters, native_context));
cg.LDR(X2, pc_after_svc);
cg.STR(X2, X1, offsetof(GuestContext, pc));
// Store SVC number to execute when we return
cg.MOV(X2, svc_id);
cg.STR(W2, X1, offsetof(GuestContext, svc));
// We are calling a SVC. Clear esr_el1 and return it.
static_assert(std::is_same_v<std::underlying_type_t<HaltReason>, u64>);
oaknut::Label retry;
cg.ADD(X2, X1, offsetof(GuestContext, esr_el1));
cg.l(retry);
cg.LDAXR(X0, X2);
cg.STLXR(W3, XZR, X2);
cg.CBNZ(W3, retry);
// Add "calling SVC" flag. Since this is X0, this is now our return value.
cg.ORR(X0, X0, static_cast<u64>(HaltReason::SupervisorCall));
// Offset the GuestContext pointer to the HostContext member.
// STP has limited range of [-512, 504] which we can't reach otherwise
// NB: Due to this all offsets below are from the start of HostContext.
cg.ADD(X1, X1, offsetof(GuestContext, host_ctx));
// Reload host TPIDR_EL0 and SP.
static_assert(offsetof(HostContext, host_sp) + 8 == offsetof(HostContext, host_tpidr_el0));
cg.LDP(X2, X3, X1, offsetof(HostContext, host_sp));
cg.MOV(SP, X2);
cg.MSR(oaknut::SystemReg::TPIDR_EL0, X3);
// Load callee-saved host registers and return to host.
static constexpr size_t HOST_REGS_OFF = offsetof(HostContext, host_saved_regs);
static constexpr size_t HOST_VREGS_OFF = offsetof(HostContext, host_saved_vregs);
cg.LDP(X19, X20, X1, HOST_REGS_OFF);
cg.LDP(X21, X22, X1, HOST_REGS_OFF + 2 * sizeof(u64));
cg.LDP(X23, X24, X1, HOST_REGS_OFF + 4 * sizeof(u64));
cg.LDP(X25, X26, X1, HOST_REGS_OFF + 6 * sizeof(u64));
cg.LDP(X27, X28, X1, HOST_REGS_OFF + 8 * sizeof(u64));
cg.LDP(X29, X30, X1, HOST_REGS_OFF + 10 * sizeof(u64));
cg.LDP(Q8, Q9, X1, HOST_VREGS_OFF);
cg.LDP(Q10, Q11, X1, HOST_VREGS_OFF + 2 * sizeof(u128));
cg.LDP(Q12, Q13, X1, HOST_VREGS_OFF + 4 * sizeof(u128));
cg.LDP(Q14, Q15, X1, HOST_VREGS_OFF + 6 * sizeof(u128));
cg.RET();
// Write the post-SVC trampoline address, which will jump back to the guest after restoring its
// state.
if (is_pre) {
curr_patch->m_trampolines_pre.push_back({cg.offset(), module_dest});
} else {
curr_patch->m_trampolines.push_back({cg.offset(), module_dest});
}
// Host called this location. Save the return address so we can
// unwind the stack properly when jumping back.
cg.MRS(X2, oaknut::SystemReg::TPIDR_EL0);
cg.LDR(X2, X2, offsetof(NativeExecutionParameters, native_context));
cg.ADD(X0, X2, offsetof(GuestContext, host_ctx));
cg.STR(X30, X0, offsetof(HostContext, host_saved_regs) + 11 * sizeof(u64));
// Reload all guest registers except X30 and PC.
// The function also expects 16 bytes of stack already allocated.
cg.STR(X30, SP, PRE_INDEXED, -16);
cg.BL(load_ctx);
cg.LDR(X30, SP, POST_INDEXED, 16);
// Use X1 as a scratch register to restore X30.
cg.STR(X1, SP, PRE_INDEXED, -16);
cg.MRS(X1, oaknut::SystemReg::TPIDR_EL0);
cg.LDR(X1, X1, offsetof(NativeExecutionParameters, native_context));
cg.LDR(X30, X1, offsetof(GuestContext, cpu_registers) + sizeof(u64) * 30);
cg.LDR(X1, SP, POST_INDEXED, 16);
// Unlock the context.
this->UnlockContext(cg);
// Jump back to the instruction after the emulated SVC.
if (&cg == &c_pre)
this->BranchToModulePre(module_dest);
else
this->BranchToModule(module_dest);
// Store PC after call.
cg.l(pc_after_svc);
if (&cg == &c_pre)
this->WriteModulePcPre(module_dest);
else
this->WriteModulePc(module_dest);
}
void Patcher::WriteMrsHandler(ModuleDestLabel module_dest, oaknut::XReg dest_reg,
oaknut::SystemReg src_reg, oaknut::VectorCodeGenerator& cg) {
// Retrieve emulated TLS register from GuestContext.
cg.MRS(dest_reg, oaknut::SystemReg::TPIDR_EL0);
if (src_reg == oaknut::SystemReg::TPIDRRO_EL0) {
cg.LDR(dest_reg, dest_reg, offsetof(NativeExecutionParameters, tpidrro_el0));
} else {
cg.LDR(dest_reg, dest_reg, offsetof(NativeExecutionParameters, tpidr_el0));
}
// Jump back to the instruction after the emulated MRS.
if (&cg == &c_pre)
this->BranchToModulePre(module_dest);
else
this->BranchToModule(module_dest);
}
void Patcher::WriteMsrHandler(ModuleDestLabel module_dest, oaknut::XReg src_reg, oaknut::VectorCodeGenerator& cg) {
const auto scratch_reg = src_reg.index() == 0 ? X1 : X0;
cg.STR(scratch_reg, SP, PRE_INDEXED, -16);
// Save guest value to NativeExecutionParameters::tpidr_el0.
cg.MRS(scratch_reg, oaknut::SystemReg::TPIDR_EL0);
cg.STR(src_reg, scratch_reg, offsetof(NativeExecutionParameters, tpidr_el0));
// Restore scratch register.
cg.LDR(scratch_reg, SP, POST_INDEXED, 16);
// Jump back to the instruction after the emulated MSR.
if (&cg == &c_pre)
this->BranchToModulePre(module_dest);
else
this->BranchToModule(module_dest);
}
void Patcher::WriteCntpctHandler(ModuleDestLabel module_dest, oaknut::XReg dest_reg, oaknut::VectorCodeGenerator& cg) {
static Common::Arm64::NativeClock clock{};
const auto factor = clock.GetGuestCNTFRQFactor();
const auto raw_factor = std::bit_cast<std::array<u64, 2>>(factor);
const auto use_x2_x3 = dest_reg.index() == 0 || dest_reg.index() == 1;
oaknut::XReg scratch0 = use_x2_x3 ? X2 : X0;
oaknut::XReg scratch1 = use_x2_x3 ? X3 : X1;
oaknut::Label factorlo;
oaknut::Label factorhi;
// Save scratches.
cg.STP(scratch0, scratch1, SP, PRE_INDEXED, -16);
// Load counter value.
cg.MRS(dest_reg, oaknut::SystemReg::CNTVCT_EL0);
// Load scaling factor.
cg.LDR(scratch0, factorlo);
cg.LDR(scratch1, factorhi);
// Multiply low bits and get result.
cg.UMULH(scratch0, dest_reg, scratch0);
// Multiply high bits and add low bit result.
cg.MADD(dest_reg, dest_reg, scratch1, scratch0);
// Reload scratches.
cg.LDP(scratch0, scratch1, SP, POST_INDEXED, 16);
// Jump back to the instruction after the emulated MRS.
if (&cg == &c_pre)
this->BranchToModulePre(module_dest);
else
this->BranchToModule(module_dest);
// Scaling factor constant values.
cg.l(factorlo);
cg.dx(raw_factor[0]);
cg.l(factorhi);
cg.dx(raw_factor[1]);
}
void Patcher::LockContext(oaknut::VectorCodeGenerator& cg) {
oaknut::Label retry;
// Save scratches.
cg.STP(X0, X1, SP, PRE_INDEXED, -16);
// Reload lock pointer.
cg.l(retry);
cg.CLREX();
cg.MRS(X0, oaknut::SystemReg::TPIDR_EL0);
cg.ADD(X0, X0, offsetof(NativeExecutionParameters, lock));
static_assert(SpinLockLocked == 0);
// Load-linked with acquire ordering.
cg.LDAXR(W1, X0);
// If the value was SpinLockLocked, clear monitor and retry.
cg.CBZ(W1, retry);
// Store-conditional SpinLockLocked with relaxed ordering.
cg.STXR(W1, WZR, X0);
// If we failed to store, retry.
cg.CBNZ(W1, retry);
// We succeeded! Reload scratches.
cg.LDP(X0, X1, SP, POST_INDEXED, 16);
}
void Patcher::UnlockContext(oaknut::VectorCodeGenerator& cg) {
// Save scratches.
cg.STP(X0, X1, SP, PRE_INDEXED, -16);
// Load lock pointer.
cg.MRS(X0, oaknut::SystemReg::TPIDR_EL0);
cg.ADD(X0, X0, offsetof(NativeExecutionParameters, lock));
// Load SpinLockUnlocked.
cg.MOV(W1, SpinLockUnlocked);
// Store value with release ordering.
cg.STLR(W1, X0);
// Load scratches.
cg.LDP(X0, X1, SP, POST_INDEXED, 16);
}
} // namespace Core::NCE