void TextureCache::RegisterImage(ImageId image_id) {
ImageBase& image = slot_images[image_id];
- ASSERT_MSG(False(image.flags & ImageFlagBits::Registered),
- "Trying to register an already registered image");
+ ASSERT(False(image.flags & ImageFlagBits::Registered) && "Trying to register an already registered image");
image.flags |= ImageFlagBits::Registered;
u64 tentative_size = (std::max)(image.guest_size_bytes, image.unswizzled_size_bytes);
- if ((IsPixelFormatASTC(image.info.format) &&
- True(image.flags & ImageFlagBits::AcceleratedUpload)) ||
- True(image.flags & ImageFlagBits::Converted)) {
+ if ((IsPixelFormatASTC(image.info.format) && True(image.flags & ImageFlagBits::AcceleratedUpload)) || True(image.flags & ImageFlagBits::Converted)) {
tentative_size = TranscodedAstcSize(tentative_size, image.info.format);
}
total_used_memory += Common::AlignUp(tentative_size, 1024);
@@ -2495,9 +2492,7 @@ void TextureCache
::DeleteImage(ImageId image_id, bool immediate_delete) {
total_used_memory -= GetScaledImageSizeBytes(image);
}
u64 tentative_size = (std::max)(image.guest_size_bytes, image.unswizzled_size_bytes);
- if ((IsPixelFormatASTC(image.info.format) &&
- True(image.flags & ImageFlagBits::AcceleratedUpload)) ||
- True(image.flags & ImageFlagBits::Converted)) {
+ if ((IsPixelFormatASTC(image.info.format) && True(image.flags & ImageFlagBits::AcceleratedUpload)) || True(image.flags & ImageFlagBits::Converted)) {
tentative_size = TranscodedAstcSize(tentative_size, image.info.format);
}
total_used_memory -= Common::AlignUp(tentative_size, 1024);
diff --git a/src/video_core/texture_cache/util.cpp b/src/video_core/texture_cache/util.cpp
index e55d0752ec..c85e801ba9 100644
--- a/src/video_core/texture_cache/util.cpp
+++ b/src/video_core/texture_cache/util.cpp
@@ -1,4 +1,4 @@
-// SPDX-FileCopyrightText: Copyright 2025 Eden Emulator Project
+// SPDX-FileCopyrightText: Copyright 2026 Eden Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
@@ -33,7 +33,6 @@
#include "video_core/texture_cache/formatter.h"
#include "video_core/texture_cache/samples_helper.h"
#include "video_core/texture_cache/util.h"
-#include "video_core/textures/astc.h"
#include "video_core/textures/bcn.h"
#include "video_core/textures/decoders.h"
@@ -608,23 +607,18 @@ u32 CalculateConvertedSizeBytes(const ImageInfo& info) noexcept {
return info.size.width * BytesPerBlock(info.format);
}
static constexpr Extent2D TILE_SIZE{1, 1};
- if (IsPixelFormatASTC(info.format) && Settings::values.astc_recompression.GetValue() !=
- Settings::AstcRecompression::Uncompressed) {
- const u32 bpp_div =
- Settings::values.astc_recompression.GetValue() == Settings::AstcRecompression::Bc1 ? 2
- : 1;
+ if (IsPixelFormatASTC(info.format) && Settings::values.astc_recompression.GetValue() != Settings::AstcRecompression::Uncompressed) {
+ const u32 bpp_div = Settings::values.astc_recompression.GetValue() == Settings::AstcRecompression::Bc1 ? 2 : 1;
// NumBlocksPerLayer doesn't account for this correctly, so we have to do it manually.
u32 output_size = 0;
for (s32 i = 0; i < info.resources.levels; i++) {
const auto mip_size = AdjustMipSize(info.size, i);
- const u32 plane_dim =
- Common::AlignUp(mip_size.width, 4U) * Common::AlignUp(mip_size.height, 4U);
+ const u32 plane_dim = Common::AlignUp(mip_size.width, 4U) * Common::AlignUp(mip_size.height, 4U);
output_size += (plane_dim * info.size.depth * info.resources.layers) / bpp_div;
}
return output_size;
}
- return NumBlocksPerLayer(info, TILE_SIZE) * info.resources.layers *
- ConvertedBytesPerBlock(info.format);
+ return NumBlocksPerLayer(info, TILE_SIZE) * info.resources.layers * ConvertedBytesPerBlock(info.format);
}
u32 CalculateLayerStride(const ImageInfo& info) noexcept {
@@ -922,8 +916,7 @@ boost::container::small_vector UnswizzleImage(Tegra::Memory
return copies;
}
-void ConvertImage(std::span input, const ImageInfo& info, std::span output,
- std::span copies) {
+void ConvertImage(std::span input, const ImageInfo& info, std::span output, std::span copies) {
u32 output_offset = 0;
Common::ScratchBuffer decode_scratch;
@@ -939,56 +932,9 @@ void ConvertImage(std::span input, const ImageInfo& info, std::span(copy.buffer_size);
- } else {
- DecompressBCn(input_offset, output.subspan(output_offset), copy, info.format);
- output_offset += copy.image_extent.width * copy.image_extent.height *
- copy.image_subresource.num_layers *
- ConvertedBytesPerBlock(info.format);
- }
-
+ ASSERT(!IsPixelFormatASTC(info.format) && "CPU ASTC decoder is phased out");
+ DecompressBCn(input_offset, output.subspan(output_offset), copy, info.format);
+ output_offset += copy.image_extent.width * copy.image_extent.height * copy.image_subresource.num_layers * ConvertedBytesPerBlock(info.format);
copy.buffer_row_length = mip_size.width;
copy.buffer_image_height = mip_size.height;
}
diff --git a/src/video_core/textures/astc.cpp b/src/video_core/textures/astc.cpp
deleted file mode 100644
index 85233d9357..0000000000
--- a/src/video_core/textures/astc.cpp
+++ /dev/null
@@ -1,1429 +0,0 @@
-// SPDX-FileCopyrightText: Copyright 2026 Eden Emulator Project
-// SPDX-License-Identifier: GPL-3.0-or-later
-
-// SPDX-FileCopyrightText: 2016 The University of North Carolina at Chapel Hill
-// SPDX-License-Identifier: Apache-2.0
-
-// Please send all BUG REPORTS to .
-//
-
-#include
-#include
-#include
-#include
-#include
-#include
-
-#include
-
-#include "common/alignment.h"
-#include "common/common_types.h"
-#include
-#include "video_core/textures/astc.h"
-#include "video_core/textures/workers.h"
-
-class InputBitStream {
-public:
- constexpr explicit InputBitStream(std::span data, size_t start_offset = 0)
- : cur_byte{data.data()}, total_bits{data.size()}, next_bit{start_offset % 8} {}
-
- constexpr size_t GetBitsRead() const {
- return bits_read;
- }
-
- constexpr bool ReadBit() {
- if (bits_read >= total_bits * 8) {
- return 0;
- }
- const bool bit = ((*cur_byte >> next_bit) & 1) != 0;
- ++next_bit;
- while (next_bit >= 8) {
- next_bit -= 8;
- ++cur_byte;
- }
- ++bits_read;
- return bit;
- }
-
- constexpr u32 ReadBits(std::size_t nBits) {
- u32 ret = 0;
- for (std::size_t i = 0; i < nBits; ++i) {
- ret |= (ReadBit() & 1) << i;
- }
- return ret;
- }
-
- template
- constexpr u32 ReadBits() {
- u32 ret = 0;
- for (std::size_t i = 0; i < nBits; ++i) {
- ret |= (ReadBit() & 1) << i;
- }
- return ret;
- }
-
-private:
- const u8* cur_byte;
- size_t total_bits = 0;
- size_t next_bit = 0;
- size_t bits_read = 0;
-};
-
-class OutputBitStream {
-public:
- constexpr explicit OutputBitStream(u8* ptr, std::size_t bits = 0, std::size_t start_offset = 0)
- : cur_byte{ptr}, num_bits{bits}, next_bit{start_offset % 8} {}
-
- constexpr std::size_t GetBitsWritten() const {
- return bits_written;
- }
-
- constexpr void WriteBitsR(u32 val, u32 nBits) {
- for (u32 i = 0; i < nBits; i++) {
- WriteBit((val >> (nBits - i - 1)) & 1);
- }
- }
-
- constexpr void WriteBits(u32 val, u32 nBits) {
- for (u32 i = 0; i < nBits; i++) {
- WriteBit((val >> i) & 1);
- }
- }
-
-private:
- constexpr void WriteBit(bool b) {
- if (bits_written >= num_bits) {
- return;
- }
-
- const u32 mask = 1 << next_bit++;
-
- // clear the bit
- *cur_byte &= u8(~mask);
-
- // Write the bit, if necessary
- if (b)
- *cur_byte |= u8(mask);
-
- // Next byte?
- if (next_bit >= 8) {
- cur_byte += 1;
- next_bit = 0;
- }
- }
-
- u8* cur_byte;
- std::size_t num_bits;
- std::size_t bits_written = 0;
- std::size_t next_bit = 0;
-};
-
-template
-class Bits {
-public:
- explicit Bits(const IntType& v) : m_Bits(v) {}
-
- Bits(const Bits&) = delete;
- Bits& operator=(const Bits&) = delete;
-
- u8 operator[](u32 bitPos) const {
- return u8((m_Bits >> bitPos) & 1);
- }
-
- IntType operator()(u32 start, u32 end) const {
- if (start == end) {
- return (*this)[start];
- } else if (start > end) {
- u32 t = start;
- start = end;
- end = t;
- }
-
- u64 mask = (1 << (end - start + 1)) - 1;
- return (m_Bits >> start) & static_cast(mask);
- }
-
-private:
- const IntType& m_Bits;
-};
-
-enum class IntegerEncoding { JustBits, Quint, Trit };
-
-struct IntegerEncodedValue {
- constexpr IntegerEncodedValue() = default;
-
- constexpr IntegerEncodedValue(IntegerEncoding encoding_, u32 num_bits_)
- : encoding{encoding_}, num_bits{num_bits_} {}
-
- constexpr bool MatchesEncoding(const IntegerEncodedValue& other) const {
- return encoding == other.encoding && num_bits == other.num_bits;
- }
-
- // Returns the number of bits required to encode num_vals values.
- u32 GetBitLength(u32 num_vals) const {
- u32 total_bits = num_bits * num_vals;
- if (encoding == IntegerEncoding::Quint) {
- total_bits += (num_vals * 8 + 4) / 5;
- } else if (encoding == IntegerEncoding::Trit) {
- total_bits += (num_vals * 7 + 2) / 3;
- }
- return total_bits;
- }
-
- IntegerEncoding encoding{};
- u32 num_bits = 0;
- u32 bit_value = 0;
- union {
- u32 quint_value = 0;
- u32 trit_value;
- };
-};
-
-// Returns a new instance of this struct that corresponds to the
-// can take no more than mav_value values
-static constexpr IntegerEncodedValue CreateEncoding(u32 mav_value) {
- while (mav_value > 0) {
- u32 check = mav_value + 1;
- // Is mav_value a power of two?
- if (!(check & (check - 1)))
- return IntegerEncodedValue(IntegerEncoding::JustBits, std::popcount(mav_value));
- // Is mav_value of the type 3*2^n - 1?
- if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1)))
- return IntegerEncodedValue(IntegerEncoding::Trit, std::popcount(check / 3 - 1));
- // Is mav_value of the type 5*2^n - 1?
- if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1)))
- return IntegerEncodedValue(IntegerEncoding::Quint, std::popcount(check / 5 - 1));
- // Apparently it can't be represented with a bounded integer sequence...
- // just iterate.
- mav_value--;
- }
- return IntegerEncodedValue(IntegerEncoding::JustBits, 0);
-}
-static constexpr std::array MakeEncodedValues() {
- std::array encodings{};
- for (std::size_t i = 0; i < encodings.size(); ++i)
- encodings[i] = CreateEncoding(u32(i));
- return encodings;
-}
-static constexpr std::array ASTC_ENCODINGS_VALUES = MakeEncodedValues();
-
-namespace Tegra::Texture::ASTC {
-using IntegerEncodedVector = boost::container::static_vector;
-
-static void DecodeTritBlock(InputBitStream& bits, IntegerEncodedVector& result, u32 nBitsPerValue) {
- // Implement the algorithm in section C.2.12
- std::array m;
- std::array t;
- u32 T;
-
- // Read the trit encoded block according to
- // table C.2.14
- m[0] = bits.ReadBits(nBitsPerValue);
- T = bits.ReadBits<2>();
- m[1] = bits.ReadBits(nBitsPerValue);
- T |= bits.ReadBits<2>() << 2;
- m[2] = bits.ReadBits(nBitsPerValue);
- T |= bits.ReadBit() << 4;
- m[3] = bits.ReadBits(nBitsPerValue);
- T |= bits.ReadBits<2>() << 5;
- m[4] = bits.ReadBits(nBitsPerValue);
- T |= bits.ReadBit() << 7;
-
- u32 C = 0;
-
- Bits Tb(T);
- if (Tb(2, 4) == 7) {
- C = (Tb(5, 7) << 2) | Tb(0, 1);
- t[4] = t[3] = 2;
- } else {
- C = Tb(0, 4);
- if (Tb(5, 6) == 3) {
- t[4] = 2;
- t[3] = Tb[7];
- } else {
- t[4] = Tb[7];
- t[3] = Tb(5, 6);
- }
- }
-
- Bits Cb(C);
- if (Cb(0, 1) == 3) {
- t[2] = 2;
- t[1] = Cb[4];
- t[0] = (Cb[3] << 1) | (Cb[2] & ~Cb[3]);
- } else if (Cb(2, 3) == 3) {
- t[2] = 2;
- t[1] = 2;
- t[0] = Cb(0, 1);
- } else {
- t[2] = Cb[4];
- t[1] = Cb(2, 3);
- t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]);
- }
-
- for (std::size_t i = 0; i < 5; ++i) {
- IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Trit, nBitsPerValue);
- val.bit_value = m[i];
- val.trit_value = t[i];
- }
-}
-
-static void DecodeQuintBlock(InputBitStream& bits, IntegerEncodedVector& result,
- u32 nBitsPerValue) {
- // Implement the algorithm in section C.2.12
- u32 m[3];
- u32 q[3];
- u32 Q;
-
- // Read the trit encoded block according to
- // table C.2.15
- m[0] = bits.ReadBits(nBitsPerValue);
- Q = bits.ReadBits<3>();
- m[1] = bits.ReadBits(nBitsPerValue);
- Q |= bits.ReadBits<2>() << 3;
- m[2] = bits.ReadBits(nBitsPerValue);
- Q |= bits.ReadBits<2>() << 5;
-
- Bits Qb(Q);
- if (Qb(1, 2) == 3 && Qb(5, 6) == 0) {
- q[0] = q[1] = 4;
- q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]);
- } else {
- u32 C = 0;
- if (Qb(1, 2) == 3) {
- q[2] = 4;
- C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0];
- } else {
- q[2] = Qb(5, 6);
- C = Qb(0, 4);
- }
-
- Bits Cb(C);
- if (Cb(0, 2) == 5) {
- q[1] = 4;
- q[0] = Cb(3, 4);
- } else {
- q[1] = Cb(3, 4);
- q[0] = Cb(0, 2);
- }
- }
-
- for (std::size_t i = 0; i < 3; ++i) {
- IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Quint, nBitsPerValue);
- val.bit_value = m[i];
- val.quint_value = q[i];
- }
-}
-
-// Fills result with the values that are encoded in the given
-// bitstream. We must know beforehand what the maximum possible
-// value is, and how many values we're decoding.
-static void DecodeIntegerSequence(IntegerEncodedVector& result, InputBitStream& bits, u32 maxRange, u32 nValues) {
- // Determine encoding parameters
- IntegerEncodedValue val = ASTC_ENCODINGS_VALUES[maxRange];
- // Start decoding
- for (u32 i = 0; i < nValues; ) {
- switch (val.encoding) {
- case IntegerEncoding::Quint:
- DecodeQuintBlock(bits, result, val.num_bits);
- i += 3;
- break;
- case IntegerEncoding::Trit:
- DecodeTritBlock(bits, result, val.num_bits);
- i += 5;
- break;
- case IntegerEncoding::JustBits:
- val.bit_value = bits.ReadBits(val.num_bits);
- result.push_back(val);
- i++;
- break;
- }
- }
-}
-
-struct Texelw_params {
- u32 m_Width = 0;
- u32 m_Height = 0;
- bool m_bDualPlane = false;
- u32 m_MaxWeight = 0;
- bool m_bError = false;
- bool m_bVoidExtentLDR = false;
- bool m_bVoidExtentHDR = false;
-
- constexpr u32 GetPackedBitSize() const noexcept {
- // How many indices do we have?
- u32 indices = (m_Height * m_Width) * (m_bDualPlane ? 2 : 1);
- return ASTC_ENCODINGS_VALUES[m_MaxWeight].GetBitLength(indices);
- }
-
- constexpr u32 GetNumWeightValues() const noexcept {
- return (m_Height * m_Width) << (m_bDualPlane ? 2 : 0);
- }
-};
-
-static Texelw_params DecodeBlockInfo(InputBitStream& strm) {
- Texelw_params params;
-
- // Read the entire block mode all at once
- u16 modeBits = u16(strm.ReadBits<11>());
-
- // Does this match the void extent block mode?
- if ((modeBits & 0x01FF) == 0x1FC) {
- if (modeBits & 0x200) {
- params.m_bVoidExtentHDR = true;
- } else {
- params.m_bVoidExtentLDR = true;
- }
-
- // Next two bits must be one.
- if (!(modeBits & 0x400) || !strm.ReadBit()) {
- params.m_bError = true;
- }
-
- return params;
- }
-
- // First check if the last four bits are zero
- if ((modeBits & 0xF) == 0) {
- params.m_bError = true;
- return params;
- }
-
- // If the last two bits are zero, then if bits
- // [6-8] are all ones, this is also reserved.
- if ((modeBits & 0x3) == 0 && (modeBits & 0x1C0) == 0x1C0) {
- params.m_bError = true;
- return params;
- }
-
- // Otherwise, there is no error... Figure out the layout
- // of the block mode. Layout is determined by a number
- // between 0 and 9 corresponding to table C.2.8 of the
- // ASTC spec.
- u32 layout = 0;
-
- if ((modeBits & 0x1) || (modeBits & 0x2)) {
- // layout is in [0-4]
- if (modeBits & 0x8) {
- // layout is in [2-4]
- if (modeBits & 0x4) {
- // layout is in [3-4]
- if (modeBits & 0x100) {
- layout = 4;
- } else {
- layout = 3;
- }
- } else {
- layout = 2;
- }
- } else {
- // layout is in [0-1]
- if (modeBits & 0x4) {
- layout = 1;
- } else {
- layout = 0;
- }
- }
- } else {
- // layout is in [5-9]
- if (modeBits & 0x100) {
- // layout is in [7-9]
- if (modeBits & 0x80) {
- // layout is in [7-8]
- assert((modeBits & 0x40) == 0U);
- if (modeBits & 0x20) {
- layout = 8;
- } else {
- layout = 7;
- }
- } else {
- layout = 9;
- }
- } else {
- // layout is in [5-6]
- if (modeBits & 0x80) {
- layout = 6;
- } else {
- layout = 5;
- }
- }
- }
-
- assert(layout < 10);
-
- // Determine R
- u32 R = !!(modeBits & 0x10);
- if (layout < 5) {
- R |= (modeBits & 0x3) << 1;
- } else {
- R |= (modeBits & 0xC) >> 1;
- }
- assert(2 <= R && R <= 7);
-
- // Determine width & height
- switch (layout) {
- case 0: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x3;
- params.m_Width = B + 4;
- params.m_Height = A + 2;
- break;
- }
-
- case 1: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x3;
- params.m_Width = B + 8;
- params.m_Height = A + 2;
- break;
- }
-
- case 2: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x3;
- params.m_Width = A + 2;
- params.m_Height = B + 8;
- break;
- }
-
- case 3: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x1;
- params.m_Width = A + 2;
- params.m_Height = B + 6;
- break;
- }
-
- case 4: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x1;
- params.m_Width = B + 2;
- params.m_Height = A + 2;
- break;
- }
-
- case 5: {
- u32 A = (modeBits >> 5) & 0x3;
- params.m_Width = 12;
- params.m_Height = A + 2;
- break;
- }
-
- case 6: {
- u32 A = (modeBits >> 5) & 0x3;
- params.m_Width = A + 2;
- params.m_Height = 12;
- break;
- }
-
- case 7: {
- params.m_Width = 6;
- params.m_Height = 10;
- break;
- }
-
- case 8: {
- params.m_Width = 10;
- params.m_Height = 6;
- break;
- }
-
- case 9: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 9) & 0x3;
- params.m_Width = A + 6;
- params.m_Height = B + 6;
- break;
- }
-
- default:
- assert(false && "Don't know this layout...");
- params.m_bError = true;
- break;
- }
-
- // Determine whether or not we're using dual planes
- // and/or high precision layouts.
- bool D = (layout != 9) && (modeBits & 0x400);
- bool H = (layout != 9) && (modeBits & 0x200);
-
- if (H) {
- const u32 maxWeights[6] = {9, 11, 15, 19, 23, 31};
- params.m_MaxWeight = maxWeights[R - 2];
- } else {
- const u32 maxWeights[6] = {1, 2, 3, 4, 5, 7};
- params.m_MaxWeight = maxWeights[R - 2];
- }
-
- params.m_bDualPlane = D;
-
- return params;
-}
-
-// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)]
-// is the same as [(num_bits - 1):0] and repeats all the way down.
-// to_bit range is expected from 0 to 8
-// num_bits range is from 0 to 7
-[[nodiscard]] constexpr u32 Replicate32(u32 v, u32 num_bits, u32 to_bit) {
- auto val = v & ((1 << num_bits) - 1);
- val |= val << (num_bits << 0);
- val |= val << (num_bits << 1);
- val |= val << (num_bits << 2);
- auto const val_mask = u32(1 << to_bit) - 1;
- return (v & ~val_mask) | (val & val_mask);
-}
-
-struct Pixel {
- using ChannelType = s16;
- ChannelType color[4] = {};
-
- Pixel() = default;
- Pixel(u32 a, u32 r, u32 g, u32 b, u32 bitDepth = 8)
- : color{ChannelType(a), ChannelType(r), ChannelType(g), ChannelType(b)}
- {}
-
- template
- static float ConvertChannelToFloat(T channel, u8 bit_depth) {
- auto const denominator = f32((1 << bit_depth) - 1);
- return f32(channel) / denominator;
- }
-
- const ChannelType& A() const {
- return color[0];
- }
- ChannelType& A() {
- return color[0];
- }
- const ChannelType& R() const {
- return color[1];
- }
- ChannelType& R() {
- return color[1];
- }
- const ChannelType& G() const {
- return color[2];
- }
- ChannelType& G() {
- return color[2];
- }
- const ChannelType& B() const {
- return color[3];
- }
- ChannelType& B() {
- return color[3];
- }
- const ChannelType& Component(u32 idx) const {
- return color[idx];
- }
- ChannelType& Component(u32 idx) {
- return color[idx];
- }
-
- // Take all of the components, transform them to their 8-bit variants,
- // and then pack each channel into an R8G8B8A8 32-bit integer. We assume
- // that the architecture is little-endian, so the alpha channel will end
- // up in the most-significant byte.
- [[nodiscard]] inline u32 Pack() const noexcept {
- return (u32(color[0]) << 24)
- | (u32(color[3]) << 16)
- | (u32(color[2]) << 8)
- | (u32(color[1]) << 0);
- }
-
- // Clamps the pixel to the range [0,255]
- void ClampByte() {
- for (u32 i = 0; i < 4; i++)
- color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
- }
-};
-
-static void DecodeColorValues(u32* out, std::span data, const u32* modes, const u32 n_partitions, const u32 nBitsForColorData) {
- // First figure out how many color values we have
- u32 nValues = 0;
- for (u32 i = 0; i < n_partitions; i++) {
- nValues += ((modes[i] >> 2) + 1) << 1;
- }
-
- // Then based on the number of values and the remaining number of bits,
- // figure out the max value for each of them...
- u32 range = 256;
- while (--range > 0) {
- auto const val = ASTC_ENCODINGS_VALUES[range];
- u32 bitLength = val.GetBitLength(nValues);
- if (bitLength <= nBitsForColorData) {
- // Find the smallest possible range that matches the given encoding
- while (--range > 0) {
- if (!ASTC_ENCODINGS_VALUES[range].MatchesEncoding(val))
- break;
- }
-
- // Return to last matching range.
- range++;
- break;
- }
- }
-
- // We now have enough to decode our integer sequence.
- IntegerEncodedVector decodedColorValues;
-
- InputBitStream colorStream(data, 0);
- DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues);
-
- // Once we have the decoded values, we need to dequantize them to the 0-255 range
- // This procedure is outlined in ASTC spec C.2.13
- u32 outIdx = 0;
- for (auto itr = decodedColorValues.begin(); itr != decodedColorValues.end(); ++itr) {
- // Have we already decoded all that we need?
- if (outIdx >= nValues) {
- break;
- }
-
- const IntegerEncodedValue& val = *itr;
- u32 bitlen = val.num_bits;
- u32 bitval = val.bit_value;
-
- assert(bitlen >= 1);
-
- // A is just the lsb replicated 9 times.
- u32 A = (bitval & 1) ? ((1 << 9) - 1) : 0;
- u32 B = 0, C = 0, D = 0;
-
- switch (val.encoding) {
- // Replicate bits
- case IntegerEncoding::JustBits:
- out[outIdx++] = Replicate32(bitval, bitlen, 8);
- break;
-
- // Use algorithm in C.2.13
- case IntegerEncoding::Trit: {
-
- D = val.trit_value;
-
- switch (bitlen) {
- case 1: {
- C = 204;
- } break;
-
- case 2: {
- C = 93;
- // B = b000b0bb0
- u32 b = (bitval >> 1) & 1;
- B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
- } break;
-
- case 3: {
- C = 44;
- // B = cb000cbcb
- u32 cb = (bitval >> 1) & 3;
- B = (cb << 7) | (cb << 2) | cb;
- } break;
-
- case 4: {
- C = 22;
- // B = dcb000dcb
- u32 dcb = (bitval >> 1) & 7;
- B = (dcb << 6) | dcb;
- } break;
-
- case 5: {
- C = 11;
- // B = edcb000ed
- u32 edcb = (bitval >> 1) & 0xF;
- B = (edcb << 5) | (edcb >> 2);
- } break;
-
- case 6: {
- C = 5;
- // B = fedcb000f
- u32 fedcb = (bitval >> 1) & 0x1F;
- B = (fedcb << 4) | (fedcb >> 4);
- } break;
-
- default:
- assert(false && "Unsupported trit encoding for color values!");
- break;
- } // switch(bitlen)
- } // case IntegerEncoding::Trit
- break;
-
- case IntegerEncoding::Quint: {
-
- D = val.quint_value;
-
- switch (bitlen) {
- case 1: {
- C = 113;
- } break;
-
- case 2: {
- C = 54;
- // B = b0000bb00
- u32 b = (bitval >> 1) & 1;
- B = (b << 8) | (b << 3) | (b << 2);
- } break;
-
- case 3: {
- C = 26;
- // B = cb0000cbc
- u32 cb = (bitval >> 1) & 3;
- B = (cb << 7) | (cb << 1) | (cb >> 1);
- } break;
-
- case 4: {
- C = 13;
- // B = dcb0000dc
- u32 dcb = (bitval >> 1) & 7;
- B = (dcb << 6) | (dcb >> 1);
- } break;
-
- case 5: {
- C = 6;
- // B = edcb0000e
- u32 edcb = (bitval >> 1) & 0xF;
- B = (edcb << 5) | (edcb >> 3);
- } break;
-
- default:
- assert(false && "Unsupported quint encoding for color values!");
- break;
- } // switch(bitlen)
- } // case IntegerEncoding::Quint
- break;
- } // switch(val.encoding)
-
- if (val.encoding != IntegerEncoding::JustBits) {
- u32 T = D * C + B;
- T ^= A;
- T = (A & 0x80) | (T >> 2);
- out[outIdx++] = T;
- }
- }
-
- // Make sure that each of our values is in the proper range...
- for (u32 i = 0; i < nValues; i++) {
- assert(out[i] <= 255);
- }
-}
-
-static u32 UnquantizeTexelWeight(const IntegerEncodedValue& val) {
- u32 bitval = val.bit_value;
- u32 bitlen = val.num_bits;
-
- // A is just LSB repeated 7 times
- u32 A = (bitval & 1) ? ((1 << 7) - 1) : 0;
- u32 B = 0, C = 0, D = 0;
-
- u32 result = 0;
- switch (val.encoding) {
- case IntegerEncoding::JustBits:
- result = Replicate32(bitval, bitlen, 6);
- break;
-
- case IntegerEncoding::Trit: {
- D = val.trit_value;
- assert(D < 3);
-
- switch (bitlen) {
- case 0: {
- u32 results[3] = {0, 32, 63};
- result = results[D];
- } break;
-
- case 1: {
- C = 50;
- } break;
-
- case 2: {
- C = 23;
- u32 b = (bitval >> 1) & 1;
- B = (b << 6) | (b << 2) | b;
- } break;
-
- case 3: {
- C = 11;
- u32 cb = (bitval >> 1) & 3;
- B = (cb << 5) | cb;
- } break;
-
- default:
- assert(false && "Invalid trit encoding for texel weight");
- break;
- }
- } break;
-
- case IntegerEncoding::Quint: {
- D = val.quint_value;
- assert(D < 5);
-
- switch (bitlen) {
- case 0: {
- u32 results[5] = {0, 16, 32, 47, 63};
- result = results[D];
- } break;
-
- case 1: {
- C = 28;
- } break;
-
- case 2: {
- C = 13;
- u32 b = (bitval >> 1) & 1;
- B = (b << 6) | (b << 1);
- } break;
-
- default:
- assert(false && "Invalid quint encoding for texel weight");
- break;
- }
- } break;
- }
-
- if (val.encoding != IntegerEncoding::JustBits && bitlen > 0) {
- // Decode the value...
- result = D * C + B;
- result ^= A;
- result = (A & 0x20) | (result >> 2);
- }
-
- assert(result < 64);
-
- // Change from [0,63] to [0,64]
- if (result > 32) {
- result += 1;
- }
-
- return result;
-}
-
-static void UnquantizeTexelWeights(u32 out[2][144], const IntegerEncodedVector& weights,
- const Texelw_params& params, const u32 blk_width,
- const u32 blk_height) {
- u32 weightIdx = 0;
- u32 unquantized[2][144];
-
- for (auto itr = weights.begin(); itr != weights.end(); ++itr) {
- unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr);
-
- if (params.m_bDualPlane) {
- ++itr;
- unquantized[1][weightIdx] = UnquantizeTexelWeight(*itr);
- if (itr == weights.end()) {
- break;
- }
- }
-
- if (++weightIdx >= (params.m_Width * params.m_Height))
- break;
- }
-
- // Do infill if necessary (Section C.2.18) ...
- u32 Ds = (1024 + (blk_width / 2)) / (blk_width - 1);
- u32 Dt = (1024 + (blk_height / 2)) / (blk_height - 1);
-
- const u32 kPlaneScale = params.m_bDualPlane ? 2U : 1U;
- for (u32 plane = 0; plane < kPlaneScale; plane++)
- for (u32 t = 0; t < blk_height; t++)
- for (u32 s = 0; s < blk_width; s++) {
- u32 cs = Ds * s;
- u32 ct = Dt * t;
-
- u32 gs = (cs * (params.m_Width - 1) + 32) >> 6;
- u32 gt = (ct * (params.m_Height - 1) + 32) >> 6;
-
- u32 js = gs >> 4;
- u32 fs = gs & 0xF;
-
- u32 jt = gt >> 4;
- u32 ft = gt & 0x0F;
-
- u32 w11 = (fs * ft + 8) >> 4;
- u32 w10 = ft - w11;
- u32 w01 = fs - w11;
- u32 w00 = 16 - fs - ft + w11;
-
- u32 v0 = js + jt * params.m_Width;
-
-#define FIND_TEXEL(tidx, bidx) \
- u32 p##bidx = 0; \
- do { \
- if ((tidx) < (params.m_Width * params.m_Height)) { \
- p##bidx = unquantized[plane][(tidx)]; \
- } \
- } while (0)
-
- FIND_TEXEL(v0, 00);
- FIND_TEXEL(v0 + 1, 01);
- FIND_TEXEL(v0 + params.m_Width, 10);
- FIND_TEXEL(v0 + params.m_Width + 1, 11);
-
-#undef FIND_TEXEL
-
- out[plane][t * blk_width + s] =
- (p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4;
- }
-}
-
-// Transfers a bit as described in C.2.14
-static inline void BitTransferSigned(int& a, int& b) {
- b >>= 1;
- b |= a & 0x80;
- a >>= 1;
- a &= 0x3F;
- if (a & 0x20)
- a -= 0x40;
-}
-
-// Adds more precision to the blue channel as described
-// in C.2.14
-static inline Pixel BlueContract(s32 a, s32 r, s32 g, s32 b) {
- return Pixel(s16(a), s16((r + b) >> 1), s16((g + b) >> 1), s16(b), 8);
-}
-
-// Partition selection functions as specified in
-// C.2.21
-static inline u32 hash52(u32 p) {
- p ^= p >> 15;
- p -= p << 17;
- p += p << 7;
- p += p << 4;
- p ^= p >> 5;
- p += p << 16;
- p ^= p >> 7;
- p ^= p >> 3;
- p ^= p << 6;
- p ^= p >> 17;
- return p;
-}
-
-static u32 SelectPartition(s32 seed, s32 x, s32 y, s32 z, s32 partitionCount, s32 smallBlock) {
- if (1 == partitionCount)
- return 0;
-
- if (smallBlock) {
- x <<= 1;
- y <<= 1;
- z <<= 1;
- }
-
- seed += (partitionCount - 1) * 1024;
-
- u32 rnum = hash52(u32(seed));
- u8 seed1 = u8(rnum & 0xF);
- u8 seed2 = u8((rnum >> 4) & 0xF);
- u8 seed3 = u8((rnum >> 8) & 0xF);
- u8 seed4 = u8((rnum >> 12) & 0xF);
- u8 seed5 = u8((rnum >> 16) & 0xF);
- u8 seed6 = u8((rnum >> 20) & 0xF);
- u8 seed7 = u8((rnum >> 24) & 0xF);
- u8 seed8 = u8((rnum >> 28) & 0xF);
- u8 seed9 = u8((rnum >> 18) & 0xF);
- u8 seed10 = u8((rnum >> 22) & 0xF);
- u8 seed11 = u8((rnum >> 26) & 0xF);
- u8 seed12 = u8(((rnum >> 30) | (rnum << 2)) & 0xF);
-
- seed1 = u8(seed1 * seed1);
- seed2 = u8(seed2 * seed2);
- seed3 = u8(seed3 * seed3);
- seed4 = u8(seed4 * seed4);
- seed5 = u8(seed5 * seed5);
- seed6 = u8(seed6 * seed6);
- seed7 = u8(seed7 * seed7);
- seed8 = u8(seed8 * seed8);
- seed9 = u8(seed9 * seed9);
- seed10 = u8(seed10 * seed10);
- seed11 = u8(seed11 * seed11);
- seed12 = u8(seed12 * seed12);
-
- s32 sh1, sh2, sh3;
- if (seed & 1) {
- sh1 = (seed & 2) ? 4 : 5;
- sh2 = (partitionCount == 3) ? 6 : 5;
- } else {
- sh1 = (partitionCount == 3) ? 6 : 5;
- sh2 = (seed & 2) ? 4 : 5;
- }
- sh3 = (seed & 0x10) ? sh1 : sh2;
-
- seed1 = u8(seed1 >> sh1);
- seed2 = u8(seed2 >> sh2);
- seed3 = u8(seed3 >> sh1);
- seed4 = u8(seed4 >> sh2);
- seed5 = u8(seed5 >> sh1);
- seed6 = u8(seed6 >> sh2);
- seed7 = u8(seed7 >> sh1);
- seed8 = u8(seed8 >> sh2);
- seed9 = u8(seed9 >> sh3);
- seed10 = u8(seed10 >> sh3);
- seed11 = u8(seed11 >> sh3);
- seed12 = u8(seed12 >> sh3);
-
- s32 a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
- s32 b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
- s32 c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
- s32 d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
-
- a &= 0x3F;
- b &= 0x3F;
- c &= 0x3F;
- d &= 0x3F;
-
- if (partitionCount < 4)
- d = 0;
- if (partitionCount < 3)
- c = 0;
-
- if (a >= b && a >= c && a >= d)
- return 0;
- else if (b >= c && b >= d)
- return 1;
- else if (c >= d)
- return 2;
- return 3;
-}
-
-static inline u32 Select2DPartition(s32 seed, s32 x, s32 y, s32 partitionCount, s32 smallBlock) {
- return SelectPartition(seed, x, y, 0, partitionCount, smallBlock);
-}
-
-// Section C.2.14
-static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const u32*& colorValues, u32 colorEndpointMode) {
-#define READ_UINT_VALUES(N) \
- u32 v[N]; \
- for (u32 i = 0; i < N; i++) { \
- v[i] = *(colorValues++); \
- }
-
-#define READ_INT_VALUES(N) \
- s32 v[N]; \
- for (u32 i = 0; i < N; i++) { \
- v[i] = static_cast(*(colorValues++)); \
- }
-
- switch (colorEndpointMode) {
- case 0: {
- READ_UINT_VALUES(2)
- ep1 = Pixel(0xFF, v[0], v[0], v[0]);
- ep2 = Pixel(0xFF, v[1], v[1], v[1]);
- } break;
-
- case 1: {
- READ_UINT_VALUES(2)
- u32 L0 = (v[0] >> 2) | (v[1] & 0xC0);
- u32 L1 = (std::min)(L0 + (v[1] & 0x3F), 0xFFU);
- ep1 = Pixel(0xFF, L0, L0, L0);
- ep2 = Pixel(0xFF, L1, L1, L1);
- } break;
-
- case 4: {
- READ_UINT_VALUES(4)
- ep1 = Pixel(v[2], v[0], v[0], v[0]);
- ep2 = Pixel(v[3], v[1], v[1], v[1]);
- } break;
-
- case 5: {
- READ_INT_VALUES(4)
- BitTransferSigned(v[1], v[0]);
- BitTransferSigned(v[3], v[2]);
- ep1 = Pixel(v[2], v[0], v[0], v[0]);
- ep2 = Pixel(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]);
- ep1.ClampByte();
- ep2.ClampByte();
- } break;
-
- case 6: {
- READ_UINT_VALUES(4)
- ep1 = Pixel(0xFF, v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
- ep2 = Pixel(0xFF, v[0], v[1], v[2]);
- } break;
-
- case 8: {
- READ_UINT_VALUES(6)
- if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
- ep1 = Pixel(0xFF, v[0], v[2], v[4]);
- ep2 = Pixel(0xFF, v[1], v[3], v[5]);
- } else {
- ep1 = BlueContract(0xFF, v[1], v[3], v[5]);
- ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
- }
- } break;
-
- case 9: {
- READ_INT_VALUES(6)
- BitTransferSigned(v[1], v[0]);
- BitTransferSigned(v[3], v[2]);
- BitTransferSigned(v[5], v[4]);
- if (v[1] + v[3] + v[5] >= 0) {
- ep1 = Pixel(0xFF, v[0], v[2], v[4]);
- ep2 = Pixel(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
- } else {
- ep1 = BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
- ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
- }
- ep1.ClampByte();
- ep2.ClampByte();
- } break;
-
- case 10: {
- READ_UINT_VALUES(6)
- ep1 = Pixel(v[4], v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
- ep2 = Pixel(v[5], v[0], v[1], v[2]);
- } break;
-
- case 12: {
- READ_UINT_VALUES(8)
- if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
- ep1 = Pixel(v[6], v[0], v[2], v[4]);
- ep2 = Pixel(v[7], v[1], v[3], v[5]);
- } else {
- ep1 = BlueContract(v[7], v[1], v[3], v[5]);
- ep2 = BlueContract(v[6], v[0], v[2], v[4]);
- }
- } break;
-
- case 13: {
- READ_INT_VALUES(8)
- BitTransferSigned(v[1], v[0]);
- BitTransferSigned(v[3], v[2]);
- BitTransferSigned(v[5], v[4]);
- BitTransferSigned(v[7], v[6]);
- if (v[1] + v[3] + v[5] >= 0) {
- ep1 = Pixel(v[6], v[0], v[2], v[4]);
- ep2 = Pixel(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
- } else {
- ep1 = BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
- ep2 = BlueContract(v[6], v[0], v[2], v[4]);
- }
- ep1.ClampByte();
- ep2.ClampByte();
- } break;
-
- default:
- assert(false && "Unsupported color endpoint mode (is it HDR?)");
- break;
- }
-
-#undef READ_UINT_VALUES
-#undef READ_INT_VALUES
-}
-
-static void DecompressBlock(std::span in_buf, const u32 blk_width, const u32 blk_height, std::span out_buf) {
- InputBitStream strm(in_buf);
- Texelw_params w_params = DecodeBlockInfo(strm);
-
- // Read num partitions
- u32 n_partitions = strm.ReadBits<2>() + 1;
- assert(n_partitions <= 4);
- // Was there an error?
- assert(!w_params.m_bError
- && !w_params.m_bVoidExtentLDR
- && !w_params.m_bVoidExtentHDR
- && !(w_params.m_Width > blk_width)
- && !(w_params.m_Height > blk_height)
- && !(n_partitions == 4 && w_params.m_bDualPlane)
- );
-
- // Based on the number of partitions, read the color endpoint mode for
- // each partition.
-
- // Determine partitions, partition index, and color endpoint modes
- u32 plane_index = UINT32_MAX;
- u32 partition_index{};
- u32 colorEndpointMode[4] = {0, 0, 0, 0};
-
- // Define color data.
- u8 color_endpoint_data[16] = {};
- OutputBitStream color_endpoint_stream(color_endpoint_data, 16 * 8, 0);
-
- // Read extra config data...
- u32 base_cem = 0;
- if (n_partitions == 1) {
- colorEndpointMode[0] = strm.ReadBits<4>();
- partition_index = 0;
- } else {
- partition_index = strm.ReadBits<10>();
- base_cem = strm.ReadBits<6>();
- }
- u32 baseMode = (base_cem & 3);
-
- // Remaining bits are color endpoint data...
- u32 nWeightBits = w_params.GetPackedBitSize();
- s32 rem_bits = 128 - nWeightBits - s32(strm.GetBitsRead());
-
- // Consider extra bits prior to texel data...
- u32 extra_cem_bits = 0;
- if (baseMode) {
- assert(n_partitions == 2 || n_partitions == 3 || n_partitions == 4);
- extra_cem_bits += (0x85200 >> (n_partitions * 4)) & 0x0f;
- }
- rem_bits -= extra_cem_bits;
-
- // Do we have a dual plane situation?
- u32 planeSelectorBits = 0;
- if (w_params.m_bDualPlane) {
- planeSelectorBits = 2;
- }
- rem_bits -= planeSelectorBits;
-
- // Read color data...
- u32 colorDataBits = rem_bits;
- while (rem_bits > 0) {
- u32 nb = (std::min)(rem_bits, 8);
- u32 b = strm.ReadBits(nb);
- color_endpoint_stream.WriteBits(b, nb);
- rem_bits -= 8;
- }
-
- // Read the plane selection bits
- plane_index = strm.ReadBits(planeSelectorBits);
-
- // Read the rest of the CEM
- if (baseMode) {
- u32 extraCEM = strm.ReadBits(extra_cem_bits);
- u32 CEM = (extraCEM << 6) | base_cem;
- CEM >>= 2;
-
- bool C[4] = {0};
- for (u32 i = 0; i < n_partitions; i++) {
- C[i] = CEM & 1;
- CEM >>= 1;
- }
-
- u8 M[4] = {0};
- for (u32 i = 0; i < n_partitions; i++) {
- M[i] = CEM & 3;
- CEM >>= 2;
- assert(M[i] <= 3);
- }
-
- for (u32 i = 0; i < n_partitions; i++) {
- colorEndpointMode[i] = baseMode;
- if (!(C[i]))
- colorEndpointMode[i] -= 1;
- colorEndpointMode[i] <<= 2;
- colorEndpointMode[i] |= M[i];
- }
- } else if (n_partitions > 1) {
- u32 CEM = base_cem >> 2;
- for (u32 i = 0; i < n_partitions; i++) {
- colorEndpointMode[i] = CEM;
- }
- }
-
- // Make sure everything up till here is sane.
- for (u32 i = 0; i < n_partitions; i++) {
- assert(colorEndpointMode[i] < 16);
- }
- assert(strm.GetBitsRead() + w_params.GetPackedBitSize() == 128);
-
- // Decode both color data and texel weight data
- u32 colorValues[32]; // Four values, two endpoints, four maximum partitions
- DecodeColorValues(colorValues, color_endpoint_data, colorEndpointMode, n_partitions,
- colorDataBits);
-
- Pixel endpoints[4][2];
- const u32* colorValuesPtr = colorValues;
- for (u32 i = 0; i < n_partitions; i++) {
- ComputeEndpoints(endpoints[i][0], endpoints[i][1], colorValuesPtr, colorEndpointMode[i]);
- }
-
- // Read the texel weight data..
- std::array texel_weights;
- std::ranges::copy(in_buf, texel_weights.begin());
-
- // Reverse everything
- for (u32 i = 0; i < 8; i++) {
-// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
-#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32
- u8 a = u8(REVERSE_BYTE(texel_weights[i]));
- u8 b = u8(REVERSE_BYTE(texel_weights[15 - i]));
-#undef REVERSE_BYTE
-
- texel_weights[i] = b;
- texel_weights[15 - i] = a;
- }
-
- // Make sure that higher non-texel bits are set to zero
- const u32 clearByteStart = (w_params.GetPackedBitSize() >> 3) + 1;
- if (clearByteStart > 0 && clearByteStart <= texel_weights.size()) {
- texel_weights[clearByteStart - 1] &= u8((1 << (w_params.GetPackedBitSize() % 8)) - 1);
- std::memset(texel_weights.data() + clearByteStart, 0, (std::min)(16U - clearByteStart, 16U));
- }
-
- IntegerEncodedVector texelWeightValues;
-
- InputBitStream weightStream(texel_weights);
-
- DecodeIntegerSequence(texelWeightValues, weightStream, w_params.m_MaxWeight,
- w_params.GetNumWeightValues());
-
- // Blocks can be at most 12x12, so we can have as many as 144 weights
- u32 weights[2][144];
- UnquantizeTexelWeights(weights, texelWeightValues, w_params, blk_width, blk_height);
-
- // Now that we have endpoints and weights, we can interpolate and generate
- // the proper decoding...
- for (u32 j = 0; j < blk_height; j++)
- for (u32 i = 0; i < blk_width; i++) {
- u32 partition = Select2DPartition(partition_index, i, j, n_partitions, (blk_height * blk_width) < 32);
- assert(partition < n_partitions);
- Pixel p;
- for (u32 c = 0; c < 4; c++) {
- u32 C0 = endpoints[partition][0].Component(c);
- u32 C1 = endpoints[partition][1].Component(c);
- C0 = (C0 & 0xff) | ((C0 & 0xff) << 8);
- C1 = (C1 & 0xff) | ((C0 & 0xff) << 8);
- u32 plane = 0;
- if (w_params.m_bDualPlane && (((plane_index + 1) & 3) == c)) {
- plane = 1;
- }
- u32 weight = weights[plane][j * blk_width + i];
- u32 C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
- if (C == 65535) {
- p.Component(c) = 255;
- } else {
- f64 Cf = f64(C);
- p.Component(c) = u16(255.0 * (Cf / 65536.0) + 0.5);
- }
- }
- out_buf[j * blk_width + i] = p.Pack();
- }
-}
-
-void Decompress(std::span data, uint32_t width, uint32_t height, uint32_t depth,
- uint32_t block_width, uint32_t block_height, std::span output) {
- const u32 rows = Common::DivideUp(height, block_height);
- const u32 cols = Common::DivideUp(width, block_width);
-
- Common::ThreadWorker& workers = GetThreadWorkers();
- for (u32 z = 0; z < depth; ++z) {
- const u32 depth_offset = z * height * width * 4;
- for (u32 y_index = 0; y_index < rows; ++y_index) {
- auto decompress_stride = [data, width, height, block_width, block_height, output, rows,
- cols, z, depth_offset, y_index] {
- const u32 y = y_index * block_height;
- for (u32 x_index = 0; x_index < cols; ++x_index) {
- const u32 block_index = (z * rows * cols) + (y_index * cols) + x_index;
- const u32 x = x_index * block_width;
-
- const std::span blockPtr{data.subspan(block_index * 16, 16)};
-
- // Blocks can be at most 12x12
- std::array uncompData;
- DecompressBlock(blockPtr, block_width, block_height, uncompData);
-
- u32 decompWidth = (std::min)(block_width, width - x);
- u32 decompHeight = (std::min)(block_height, height - y);
-
- const std::span outRow = output.subspan(depth_offset + (y * width + x) * 4);
- for (u32 h = 0; h < decompHeight; ++h) {
- std::memcpy(outRow.data() + h * width * 4, uncompData.data() + h * block_width, decompWidth * 4);
- }
- }
- };
- workers.QueueWork(std::move(decompress_stride));
- }
- workers.WaitForRequests();
- }
-}
-
-} // namespace Tegra::Texture::ASTC
diff --git a/src/video_core/textures/astc.h b/src/video_core/textures/astc.h
deleted file mode 100644
index afd3933c3e..0000000000
--- a/src/video_core/textures/astc.h
+++ /dev/null
@@ -1,11 +0,0 @@
-// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
-// SPDX-License-Identifier: GPL-2.0-or-later
-
-#pragma once
-
-namespace Tegra::Texture::ASTC {
-
-void Decompress(std::span data, uint32_t width, uint32_t height, uint32_t depth,
- uint32_t block_width, uint32_t block_height, std::span output);
-
-} // namespace Tegra::Texture::ASTC